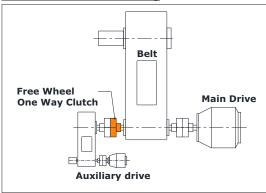
Selection Procedure

1) Calculate the torque of the Clutch.


Torque (Nm): $\frac{\text{Input Power (kw) x 9550}}{\text{Speed of Shaft (RPM)}}$

- 2) Determine the mode operation (Overrunning, Indexing, Backstopping).
- 3) Determine the service factor (Refer the table).
- 4) Calculate the design torque (Torque x Service Factor).
- 5) Bore size and installation method.
- 6) Determine the max. overrunning speed and cycle time of operation.
- 7) Calculate the static torque reverse motion from the maximum load expected and multiply it by the

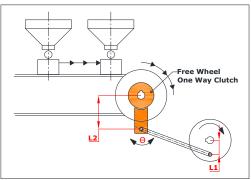
service factor (Back - stopping).

- 8) Select nearest equal / higher side torque referring catalogue table torque and specify the name of model & bore size.
- 9) *Specify direction of inner race drive.
 - *Please consult NMTG for proper selection.
 - *This is required for your fitment purpose.

Function :- Overrunning

A) Calculated the Torque on the Clutch according to the following formula:

Torque (Nm) : $\frac{\text{Input Power (kw) x 9550}}{\text{(N) Speed of Shaft(RPM)}} \quad \text{x S.F}$


T: Loaded Torque on Clutch (Nm)

kw: Input Power (kw)

N: Speed of Clutch Shaft Rotation (RPM) S.F: Service Factor - (Refer Page No. - 7)

- Also Select Clutch by considering following:
- 1) Design torque requirement and service factor.
- 2) Maximum overrunning speed.
- 3) Bore and installation method.

Function :- Indexing

- A) When detailed load condition is to be calculated, apply Formula (1) and when it is not, apply Formula (2) and check the torque on the clutch.
- B) Select the clutch by:
 - 1) Design Torque Requirement
 - 2) Maximum Indexing Cycles N
 - 3) Feeding Angle Θ
 - 4) N x Θ
 - 5) Bore size and Installation Method.

Formula (1):

Torque T_{Nm}:
$$\frac{J x \theta x N^2}{10380} + T_B$$

T : Loaded Torque on Clutch (Nm)

J : Inertia of Load (kgf.m²) on Clutch Shaft
 θ : Feeding Angle (deg) on Clutch Shaft
 N : Indexing Cycles per minute (c/min.)

TB: Brake Torque calculated on Clutch Shaft (Nm)

Formula (2) :

Torque T
$$_{\text{Nm}}$$
: $\frac{9550 \text{ x kw}}{n}$ x S.F

T : Loaded torque on Clutch (Nm)

kw : Transmitted Power (kw)
n : Speed of Crank Shaft (r/min):

S.F : Service Factor - (Refer Page No. 7)

Service Factor

INDEXING					
Cnood		Service			
Speed	Degree/Load cycle	Factor			
> 150 strokes/min	-	3			
> 100 strokes/min	>90°	2.5			
< 100 strokes/min	>90°	2			

OVERRUNNING							
		Working condition					
Driving Machine		Starting torque not higher than normal smooth	Starting torque up to 2 times running torque. Moderate load variations.	Starting torque 2 to 3 times running torque. Load variation.	Starting torque 2 to 3 times running torque. Load variation.	High starting torque. High load torque variations.	
DC - motor AC - motor with soft start or hydraulic		1.3	1.5	1.8	1.8	-	
Asynchronous motor	Speed reduction between motor & freewheel < 20	-	2.5	3	3	4	
with direct start	Speed reduction between motor & freewheel > 20	-	1.5	2.5	2.5	3.5	

BACKSTOPPING							
	Driven Machine						
Driving Machine	Elastic conveyor	Pump drives with	Pump drives with more	Fone	Other machines		
	belts with risk of more than 5 than 5 meters Shaft	Falls	No overloads	Dynamic overloads			
Motors with hydraulic	1.3	1.6	1.6	0.5	1	1.5	
coupling	1.5	1.0	1.0	0.5	1	1.5	
Asynchronous motors	1.6	1.6	1.6	0.5	1	1.5	
with direct start						1.5	
Steam or Gas turbine	-	1.6	1.6	0.5	1	1.5	
Internal combustion	1.6	1.6	1.6	0.5	1	1.5	
engine	1.0	1.0	1.0	0.5	1	1.3	
Note : These values do not cover a motor start in the wrong direction.							

Hold back / Backstopping Selection Procedure (For Heavy Duty Application):

A: Belt Conveyor (for Short Inclined Yard Conveyor):

1) Calculate the Power to move an Empty Belt & Idlers

P1 = 0.06 x f x w x v x
$$\frac{\ell + \ell_0}{367}$$
 (kW)

2) Calculate the Power to move a loaded Belt horizontally

$$P2 = f x qt x \frac{\ell + \ell_0}{367} (kW)$$

3) Calculate Power to move the load vertically

$$P3 = \frac{h \times qt}{367} \text{ (kW)}$$

4) Calculate the Back-stop Power

$$Pr = P3 - 0.7 (P1 + P2) (kw)$$

5) Calculate the Back-stop Torque

$$T = \frac{9550 \times Pr}{n} \times S.F$$

6) Select the proper Clutch which satisfies the Calculated Back-stop torque

Note:

f = Friction Coefficient of Roller : 0.03
 (normally used)

w = Weight of moving parts of conveyor on unload condition (kg/m)

T = Torque (Nm)

V = Velocity of conveyor (m/min.)

qt = Max. load (tons/hour)

h = Total lift (m)

e Horizontal distance between head pulley and tail pulley (m)

eo = Modificant coefficient for **e** : 49 m (Normally used)

n = Shaft revolution per minute where clutch is mounted (RPM)

B: Bucket Elevator:

1) Calculate backstop torque

T (Nm) =
$$\frac{9.8 \text{ (H+D)} \times \text{Qt} \times \text{D} \times 1000}{120 \times \text{V}} \times \text{S.F}$$

2) Select the Proper Clutch which satisfies the Calculated Back-stop torque

Note:

H = Total Lift (m)

D = Pitch Circle Diameter of head Sprocket (m)

Qt = Possible maximum load (tons/hour)

V = Velocity of conveyor (m/min)

SF = Service Factor (Refer Page No. - 7)

Use the values from the table below.						
Width of Belt (mm) 400 450 500 600 750 900						
Estimated weight (kg/m)	22.4	28	30	35.5	53	63
Width of Belt (mm)	1050	1200	1400	1600	1800	2000
Estimated weight (kg/m)	80	90	112	125	150	160

C: Belt Conveyor (for Long Long Yard Conveyor):

$$T = \frac{7020 \times H}{n} \times s.f$$

$$T = \frac{9550 \text{ x kW}}{n} \text{ x s.f}$$

Note:

kW = Electric power

H = Horse Power

s.f = Service factor

Hold back / Backstopping Selection Procedure (For Heavy Duty Application):

Service Factor:

Motor Stalled Torque				
Maximum Stalled Torque or Breakdown	Service Factor			
torque % of Normal Motor Rating	Service ractor			
175%	1.17			
200%	1.33			
250%	1.67			
300%	2			

Fatigue Loading				
Service Condition	Service Factor			
For backstopping 3 - 10 times per day	1.5			
For backstopping over 10 times per day	2			